
March 2023 Report No. UMTRI-2023-5

Project Start Date:  March, 2019 

Project End Date: February, 2020 

Accelerated Training for Connected and 
Automated Vehicles Based on Adaptive 
Evaluation Method 

by 
Henry Liu, Professor 
Yiheng Feng, Assistant Research Scientist 
University of Michigan 



DISCLAIMER 

Funding for this research was provided by the Center for Connected and Automated Transportation 
under Grant No. 69A3551747105 of the U.S. Department of Transportation, Office of the Assistant 
Secretary for Research and Technology (OST-R), University Transportation Centers Program. The 
contents of this report reflect the views of the authors, who are responsible for the facts and the 
accuracy of the information presented herein. This document is disseminated under the sponsorship of 
the Department of Transportation, University Transportation Centers Program, in the interest of 
information exchange. The U.S. Government assumes no liability for the contents or use thereof. 

Suggested APA Format Citation: 

Liu, H.X.  & Feng, Y. (2020). Accelerated Training for Connected and Automated Vehicles Based on 
Adaptive Evaluation Method. Final Report. UMTRI-2023-5.
DOI: 10.7302/7017

Contacts

For more information: 

Dr. Henry X. Liu 
University of Michigan 
2350 Hayward, Ann Arbor, MI, 48109 
Phone: (734) 647-4796 
Email: henryliu@umich.edu 

Dr. Yiheng Feng 
University of Michigan 
2901 Baxter Rd, Ann Arbor, MI, 48109 
Phone: (734) 936-1052 
Email: yhfeng@umich.edu 

Center for Connected and Automated Transportation 
University of Michigan Transportation Research Institute 
2901 Baxter Road 
Ann Arbor, MI  48152 
umtri-ccat@umich.edu 
ccat.umtri.umich.edu 
(734) 763-2498

Technical Report Documentation Page 

1. Report No.

UMTRI-2023-5
2. Government Accession No. 3. Recipient’s Catalog No.

4. Title and Subtitle
Accelerated Training for Connected and Automated Vehicles Based on Adaptive

5. Report Date

March 2020 

mailto:henryliu@umich.edu
mailto:yhfeng@umich.edu
mailto:umtri-ccat@umich.edu


Evaluation Method

DOI: 10.7302/7017
6. Performing Organization Code

7. Author(s)

Liu, Henry, Ph.D., https://orcid.org/0000-0002-3685-9920

Feng, Yiheng, Ph.D., https://orcid.org/0000-0001-5656-3222

8. Performing Organization Report No.

9. Performing Organization Name and Address

UMTRI

2901 Baxter Road

Ann Arbor, MI  48109

10. Work Unit No.

11. Contract or Grant No.

Contract No. 69A3551747105

12. Sponsoring Agency Name and Address

Center for Connected and Automated Transportation

University of Michigan Transportation Research Institute

2901 Baxter Road

Ann Arbor, MI  48109

13. Type of Report and Period Covered

Final Report

March 2019 – February 2020

14. Sponsoring Agency Code

15. Supplementary Notes

Conducted under the U.S. DOT Office of the Assistant Secretary for Research and Technology’s (OST-R) University

Transportation Centers (UTC) program.

16. Abstract

How to generate testing scenario libraries for connected and automated vehicles (CAVs) is a major challenge faced by the industry.

In previous studies, to evaluate maneuver challenge of a scenario, surrogate models (SMs) are often used without explicit knowledge

of the CAV under test. However, performance dissimilarities between the SM and the CAV under test usually exist, and it can lead

to the generation of suboptimal scenario libraries. In this project, an adaptive testing scenario library generation (ATSLG) method

is proposed to solve this problem. A customized testing scenario library for a specific CAV model is generated through an adaptive

process. To compensate for the performance dissimilarities and leverage each test of the CAV, Bayesian optimization techniques

are applied with classification-based Gaussian Process Regression and a newly designed acquisition function. Comparing with a pre-

determined library, a CAV can be tested and evaluated in a more efficient manner with the customized library. To validate the

proposed method, a cut-in case study is investigated and the results demonstrate that the proposed method can further accelerate the

evaluation process by a few orders of magnitude.

17. Key Words

Connected and automated vehicles, Testing scenario library, 

Adaptive testing and evaluation, Bayesian optimization 

18. Distribution Statement

No restrictions. 

19. Security Classif. (of this report)

Unclassified 

20. Security Classif. (of this page)

Unclassified 

21. No. of Pages

32 

22. Price

Form DOT F 1700.7 (8-72) Reproduction of completed page authorized 

https://orcid.org/0000-0002-3685-9920
https://orcid.org/0000-0001-5656-3222


 

  

Table of Contents 

List of Figures ...................................................................................................................................... 2 

Project Summary ................................................................................................................................ 3 

1. Introduction................................................................................................................................ 4 

2. Adaptive Testing Scenario Library Generation Method ............................................................. 6 
2.1 Revisit the TSLG Method ..................................................................................................................... 6 
2.2 Problem Formulation .......................................................................................................................... 8 

2.2.1 ATSLG Problem ........................................................................................................................ 8 
2.2.2 Bayesian Optimization Scheme ............................................................................................... 9 

2.3 Adaptive Testing Scenario Library Generation .................................................................................. 10 
2.3.1 Initial Testing Scenarios ......................................................................................................... 11 
2.3.2 Classification-based Gaussian Process Regression ................................................................ 11 
2.3.3 Surrogate Model Update and Library Generation................................................................. 14 
2.3.4 Acquisition Function Design .................................................................................................. 14 
2.3.5 Overall Algorithm .................................................................................................................. 16 

3. Cut-in Case Study ..................................................................................................................... 16 
3.1 Case Description ................................................................................................................................ 16 
3.2 Offline Library Generation................................................................................................................. 17 
3.3 Adaptive Library Generation ............................................................................................................. 20 
3.4 CAV Evaluation .................................................................................................................................. 23 

4. Findings and Recommendations .............................................................................................. 25 

5. Outputs ..................................................................................................................................... 25 

6. Impacts ..................................................................................................................................... 26 

References ........................................................................................................................................ 27 

 

 



 

  

List of Figures 

Figure 1: Illustration of suboptimal scenarios for a test CAV. ...................................................................... 4 
Figure 2: Illustration of the adaptive testing scenario library generation process. ...................................... 5 
Figure 3 Illustration of the cut-in case. ....................................................................................................... 17 
Figure 4 An illustration of the cut-in events distribution in Michigan area (Gong, et al., 2018). ............... 17 
Figure 5 The probability of the cut-in range and range rate in NDD, i.e., P(x). ......................................... 18 
Figure 6 Safety performance of the SM. ..................................................................................................... 19 
Figure 7 The offline generated library of the cut-in case for safety evaluation based on the FVDM. ....... 20 
Figure 8. Results of 50 initial testing scenarios, where the black dots denote the dissimilar scenarios, and 
the orange dots denote the similar scenarios. ........................................................................................... 21 
Figure 9. The results of the adaptive library generation for the cut-in case. ............................................. 22 
Figure 10. The improved library of the cut-in case for safety evaluation. .................................................. 23 
Figure 11. The evaluation results of the cut-in case with NDD evaluation (a, b), offline library evaluation 
(c-e, blue line), and adaptive library evaluation (c-e, red line). .................................................................. 25 

 

 



 

  

Project Summary 

 

How to generate testing scenario libraries for connected and automated vehicles (CAVs) is a 

major challenge faced by the industry. In previous studies, to evaluate maneuver challenge of a 

scenario, surrogate models (SMs) are often used without explicit knowledge of the CAV under 

test. However, performance dissimilarities between the SM and the CAV under test usually exist, 

and it can lead to the generation of suboptimal scenario libraries. In this project, an adaptive 

testing scenario library generation (ATSLG) method is proposed to solve this problem. A 

customized testing scenario library for a specific CAV model is generated through an adaptive 

process. To compensate for the performance dissimilarities and leverage each test of the CAV, 

Bayesian optimization techniques are applied with classification-based Gaussian Process 

Regression and a newly designed acquisition function. Compared with a pre-determined library, 

a CAV can be tested and evaluated in a more efficient manner with the customized library. To 

validate the proposed method, a cut-in case study is investigated, and the results demonstrate 

that the proposed method can further accelerate the evaluation process by a few orders of 

magnitude. 

 

 



 

  

1. Introduction 

Testing scenario library generation (TSLG) is a major challenge in evaluating connected and 

automated vehicles (CAVs). A scenario describes the temporal development in a sequence of 

scenes, where a scene is a snapshot of the environment including stationary elements (e.g., road 

geometry) and dynamic elements (e.g., background vehicles) [1]. Given an operational design 

domain (ODD) [2], there could exist millions of scenarios with different parameters, e.g., different 

maneuvers of background vehicles. A testing scenario library is defined as a critical subset of 

scenarios that can be used for the evaluation of certain performance metrics (e.g., safety). In the 

past few years, increasing research efforts have been made to solve the TSLG problem [3-13] (see 

[14] and references therein). However, most existing methods have limitations in either scenario 

types that can be handled, CAV models that can be applied, or performance metrics that can be 

evaluated.  

To overcome these limitations, a systematic framework was proposed in our previous studies 

[14-16]. Each testing scenario was evaluated by a newly proposed measure, scenario criticality, 

which can be computed as a combination of exposure frequency and maneuver challenge. The 

exposure frequency can be obtained by using naturalistic driving data (NDD). To evaluate the 

maneuver challenge, a surrogate model (SM) is utilized as the exact CAV model is not available. 

Performance dissimilarities between the SM and the specific CAV under evaluation, however, 

usually exist and can lead to the generation of suboptimal scenario library. The suboptimal library 

may increase the number of tests in order to reach a required evaluation precision, therefore 

may become the major source of evaluation inefficiency. 

 

Figure 1: Illustration of suboptimal scenarios for a test CAV. 

Two types of suboptimal scenarios exist, as shown in Figure 1. Underweight scenarios represent 

the critical scenarios that are ignored by the library, and overweight scenarios represent the 

uncritical scenarios that are included in the library. If we denote the scenario library generated 



 

  

by using the SM as “offline generated library”, and a customized library that includes all critical 

scenarios specifically designed for a CAV as “optimal library”, the differences between these two 

libraries include both underweight and overweight scenarios.   

The goal of this project is to generate the customized optimal library by reducing the number of 

suboptimal scenarios through an adaptive testing process. An illustration of this process is shown 

in Figure 2. The customization process starts with the test of CAV using a small set of scenarios 

sampled from the off-line generated library. After the initial testing, at each iteration, the most 

informative scenario is selected and tested, following that the SM is dynamically updated and the 

customized library is progressively improved, until the threshold for the dissimilarity 

compensation is reached. With the customized library, the CAV can be tested and evaluated in a 

more efficient manner, comparing with the evaluation method utilizing the offline generated 

library. 

 

Figure 2: Illustration of the adaptive testing scenario library generation process. 

 

In the adaptive testing process, to leverage each CAV test, Bayesian optimization techniques [17, 

18] are applied. The classification-based Gaussian Process Regression (GPR) [19] is used to 

estimate the nonstationary performance dissimilarities, and a new acquisition function is 

designed to determine the most informative testing scenario in each iteration. Both the prior 

knowledge (e.g., SM and offline generated library) and observations (e.g., results from the 

adaptive testing process) are utilized to customize the library. To validate the proposed 

framework, a cut-in case is studied in similar settings to those in [15]. Comparing with the TSLG 

framework in [14], the new adaptive framework can further accelerate the evaluation process by 

a few orders of magnitude, e.g., 10-100. 

 



 

  

2. Adaptive Testing Scenario Library Generation Method 

In this section, we will introduce the proposed adaptive testing scenario library generation 

(ATSLG) method. For the convenience of the readers, Section 2.1 briefly revisits the offline library 

generation method discussed in [14-16]. In Section 2.2, the problem of the adaptive testing 

process is formulated. The ATSLG method is elaborated in Section 2.3.  

2.1 Revisit the TSLG Method 

The goal of the TSLG is to is to generate a set of critical scenarios, which can be used to evaluate 

CAVs for certain performance indices more efficiently. If an event of interest during a testing 

scenario is denoted as A, e.g., an accident event, the performance index can be defined as its 

occurrence probability, i.e., 

 
 

(2-1) 

where 𝑥  denotes the decision variables of testing scenarios (e.g., maneuvers of background 

vehicles), 𝑋 denotes the feasible set of 𝑥, and 𝜃 denotes the pre-determined parameters in the 

operational design domain (ODD) of CAVs, e.g., road type, weather condition, number of lanes, 

speed limit, etc. Since 𝜃 keeps constant in the library generation process, it will be omitted from 

now on to simplify the notations. So, the Eq. (2-1) is rewritten as 

 

  
(2-2) 

Essentially the on-road test is to evaluate the performance index in a naturalistic driving 

environment. Taking the cut-in case as an example, if a testing CAV drives on public roads, 

experiences 𝑛 cut-in scenarios, and has 𝑚 accident events, the accident rate of the CAV in the 

cut-in scenarios is estimated as 

 

 

(2-3) 

where the last two equations are derived by Monte Carlo theory [20]. Here the cut-in scenarios 

on public roads follow the naturalistic distribution, i.e., 𝑥𝑖~𝑃(𝑥). Because the accident event A 

under the naturalistic driving environment is very rare, the required number of tests is intolerably 

large for reasonable estimation precision [21]. 

 

 



 

  

To mitigate this issue, importance sampling techniques were applied by [6] as

 

  (2-4) 

where 𝑞(𝑥) denotes an importance function, and 𝑃(𝐴|𝑥𝑖)  is obtained by the testing results. 

Compared with Eq. (2-3), testing scenarios are sampled via the importance function 𝑞(𝑥) instead 

of 𝑃(𝑥). Intuitively, if 𝑞(𝑥) can increase the testing frequency of critical scenarios where the 

accident events happen more frequently, the evaluation efficiency can be improved.  

For a certain estimation precision, the minimal number of tests (i.e., evaluation efficiency) is 

determined by the importance function. The required estimation precision can be measured by 

relative half-width for a given confidence level [22]. With the confidence level at 100(1 − 𝛼)%, 

the relative half-width is defined as 

 

 
(2-5) 

where 𝜇𝐴 = 𝑃(𝐴), Φ−1 denotes the inverse cumulative distribution function of standard normal 

distribution 𝒩(0,1) , and 𝑉𝑎𝑟(𝜇𝐴) = 𝜎2/𝑛  denotes the estimation variance. For a pre-

determined half-width 𝛽, the minimal number of tests is derived as 

 

 

(2-6) 

Therefore, the evaluation process has higher efficiency with a smaller 𝜎. By importance sampling 

theory [23], the estimation variance can be derived as 

 

 
(2-7) 

which is determined by the importance function. To obtain an importance function with small 

variance, a heuristic searching method was proposed in [6], which performs well in simple cases 

for safety evaluation (e.g., cut-in). For complex cases and other metrics (e.g., functionality), 

construction of a proper importance function becomes a big challenge. 

To solve this problem, the criticality of scenarios was defined in [14], and critical scenarios were 

obtained to construct a library by efficient searching methods. The critical scenarios as well as 

their criticality values essentially construct the important function. Specifically, the criticality is 

defined as the combination of maneuver challenge and exposure frequency as 



 

  

 
 (2-8) 

where S denotes the event of interest with the SM of CAVs. The SM denotes what we know about 

common features of CAVs. Integrated with a 𝜖-greedy sampling policy, the importance function 

is constructed as 

 

 
(2-9) 

where Φ  denotes the critical scenarios (i.e., the library), 𝑁(𝑋)  and 𝑁(Φ)  denote the total 

number of feasible scenarios and critical scenarios respectively, and W is a normalization factor 

as 

 

 
(2-10) 

The importance function was justified by theoretical analysis and case studies regarding 

evaluation accuracy and efficiency.  

As discussed above, the maneuver challenge (𝑃(𝑆|𝑥)) is evaluated by using an SM of CAV. 

However, performance dissimilarities between the SM and CAV models usually exist and can lead 

to the generation of suboptimal scenario library. The suboptimal library may increase the 

variance 𝜎2 and therefore decrease the evaluation efficiency. To further improve the evaluation 

efficiency, the problem of ATSLG is formulated and addressed in this project. 

2.2 Problem Formulation 

In this section, the problem of ATSLG is formulated as a Bayesian optimization problem. 

Specifically, the ATSLG problem is analyzed in Subsection 2.2.1. In Subsection 2.2.2, the Bayesian 

optimization scheme is presented, and major challenges are analyzed.  

2.2.1 ATSLG Problem 

The goal of the ATSLG is to minimize the estimation variance 𝜎2 by as few numbers of tests as 

possible. As discussed above, the key is to compensate for the performance dissimilarities 

between the SM and the CAV under test. The dissimilarity function can be defined as 

 

Each test of the CAV will provide one observation of 𝑓(𝑥). Denote 𝑓(𝑥)as an estimation of 𝑓(𝑥), 

and then the SM can be updated with the compensation as 

 



 

  

where 𝑆′ denotes the event of interest with the updated SM. Therefore, with the compensation 

𝑓(𝑥), the estimation variance should be reduced. If the mapping relation is denoted as a function 

𝜎2(�̃�(𝑥)), the ATSLG problem can be formulated as 

 

where 𝐹 denotes the function space of 𝑓.  

As indicated in Theorem 2 in [14], the optimal solution is obtained if the dissimilarities are exactly 

compensated, i.e., 𝑓 = 𝑓. Generally, more observations of 𝑓 can lead to better compensation. 

However, each observation of 𝑓 required one real vehicle testing, which is time-consuming and 

cost expensive. Therefore, the objective function should be optimized with as few observations 

as possible.  

To solve the problem, there are two critical subproblems. The first is how to select each test 

scenario 𝑥  for the new observation of 𝑓(𝑥). The informativeness of each scenario should be 

evaluated in the sense that how much information the new observation can provide for reducing 

the estimation variance. At each iteration, the most informative scenario should be selected for 

the next observation. The second is how to update the compensation function 𝑓(𝑥) for smaller 

𝜎2 by leveraging all the existing observations and prior knowledge. 

2.2.2 Bayesian Optimization Scheme 

Bayesian optimization tries to optimize an unknown function 𝑓(𝑥) by as few observations as 

possible [17]. It has been widely applied in various fields including intelligent transportation 

systems [24-29] (see [18], [30] and references therein). It provides a powerful and flexible scheme 

especially for the optimization problems with expensive and black-box objective functions. The 

basic idea is to assume a prior probabilistic model for 𝑓(𝑥) and then exploit this model to decide 

where to observe 𝑓(𝑥)  next, while integrating out uncertainty. Prior knowledge can be well 

utilized in the construction of the prior probabilistic model. To decide the next point for 

observation, various acquisition functions have been proposed for the measurement of the 

informativeness [18], e.g., expected improvement, knowledge gradient, entropy search, and 

predictive entropy search. With a properly designed acquisition function, the most informative 

scenario can be selected. Posterior knowledge can be obtained by integrating prior knowledge 

and observations. 

Table 1. Algorithm scheme of the ATSLG process 

Input: SM and offline generated library; 

Output: Evaluation results of the CAV 

Step 1: Observe 𝑓 by testing the CAV with initial testing scenarios. 



 

  

Step 2: While the stop criteria (e.g., budget or precision) is not satisfied 

        Step 2.1: Obtain the estimation 𝑓; 

        Step 2.2: Update SM and library; 

        Step 2.3: Decide next iteration of testing scenarios; 

        Step 2.4: Observe 𝑓 by testing the CAV with new testing scenarios; 

End 

Step 3: Test and evaluate the CAV with the customized library. 

 

In this project, we propose to apply the Bayesian optimization scheme for the ATSLG problem. 

Specifically, the scheme of the ATSLG problem is described in Table 1. The SM and the offline 

generated library can be utilized as prior knowledge. The informativeness of each scenario can 

be evaluated by the acquisition function, and  𝑓(𝑥)  can be estimated as the posterior knowledge. 

Then, the SM as well as the library can be improved accordingly. 

When applying the Bayesian optimization scheme to the ATSLG problem, there are three major 

challenges as follows: 

First, the ATSLG problem optimizes in the function space, 𝑓 ∈ 𝐹, instead of the parameter space, 

𝑥 ∈ 𝑋. Essentially, the function space is infinite-dimensional, and optimization in the function 

space belongs to the domain of infinite dimensional analysis [31]. For the common Bayesian 

optimization problems, however, the decision variable 𝑥 ∈ 𝑋 is finite-dimensional, which is less 

complex and challenging. Although the function space can be simplified as a finite-dimensional 

space after the discretization, its dimension is still much higher than the decision variable. In the 

cut-in case of this project, for example, the dimension of 𝑓(𝑥) is 3,420 after discretization, while 

the dimension of 𝑥 is only 2. 

Second, performances of a CAV may change more drastically in certain scenario neighborhoods 

than others, and therefore the covariance of the dissimilarity function can be highly non-

stationary and nonlinear.  

Third, the objective function 𝜎2 is unavailable for the ATSLG problem. 𝜎2cannot be calculated 

unless 𝜇𝐴
2  is known, which is exactly what needs to be evaluated. However, most existing 

acquisition functions of Bayesian optimization methods are calculated based on the availability 

of objective functions. Consequently, a new acquisition function needs to be designed. 

We aim to address the above challenges in the following section. 

 

2.3 Adaptive Testing Scenario Library Generation 



 

  

In Subsection 2.3.1, to “prime the pump” with initial testing scenarios, a sampling mechanism 

that balances the exploitation of the offline generated library and exploration outside the library 

is designed. Such a sampling mechanism will provide a sketch of the dissimilarity function. In 

Subsection 2.3.2, different from most Bayesian optimization methods where explicit objective 

functions are estimated, the dissimilarity function is estimated by the Gaussian process 

regression (GPR) method. To handle the non-stationary challenge, scenarios are classified into 

two groups before applying the GPR method, resulting in the classification based GPR method. 

In Subsection 2.3.3, the SM is compensated with the estimated dissimilarity function, and the 

new library is generated accordingly. Furthermore, in Subsection 2.3.4, the informativeness of 

each scenario is measured by the estimated improvement of the evaluation efficiency, and then 

a new acquisition function is designed. Finally, the overall algorithm is summarized in Subsection 

2.3.5. 

2.3.1 Initial Testing Scenarios 

To provide a sketch of the dissimilarity function, we should balance the exploitation of the offline 

generated library and exploration outside the library. To this end, a simple yet effective policy is 

proposed as follows. Since scenarios of the library have higher testing priority, they are more 

likely to be overweighted. To find overweight scenarios, the library is sampled according to 

scenario criticality values. Similarly, scenarios outside the library are more likely to be 

underweighted. To find underweight scenarios, scenarios outside the library are randomly 

sampled with a probability 𝛾. Comparing with the 𝜖 , the value of 𝛾  is much larger, e.g., 0.5. 

Similar to the ̀ `No Free Lunch Theorem'' [32], if there is no additional information about locations 

of the underweight scenarios, any searching scheme is no better than random sampling. 

Incorporating all these considerations, the initial testing scenarios are sampled as 

 

 

 

where 𝑥0 denotes an initial testing scenario. To better explore the underweight scenarios, the 

value of 𝛾 (e.g., 0.5) is usually greater than 𝜖 (e.g., 0.1) in the 𝜖-sampling policy .  

2.3.2 Classification-based Gaussian Process Regression 

The dissimilarity function is estimated by the GPR method [19], because of the following 

advantages. As a non-parametric method, it is not limited by a functional form and thus is flexible 

and powerful for estimating highly nonlinear functions. Moreover, it is also convenient to add 

prior knowledge of the specific problem by selecting different covariance functions. In this 

project, a non-stationary covariance function is designed by the classification-based GPR method. 

Furthermore, besides the function estimation, it can also provide a probability distribution over 



 

  

the function estimation, which captures the estimation uncertainty. The informativeness of each 

scenario can be evaluated based on the estimation uncertainty. 

The basic idea is to use a Gaussian process (GP) to describe a probability distribution over the 

functions. Specifically, the value of 𝑓(𝑥) at each scenario 𝑥  is viewed as a Gaussian random 

variable, and values of 𝑓(𝑥) at all scenarios follow a joint Gaussian distribution. As a result, 

𝑓(𝑥) can be represented by the GP as 

 

where both 𝑥 and 𝑥′ denote scenarios, 𝑚(𝑥) denotes the mean function, and 𝑘(𝑥, 𝑥′) denotes 

the covariance function as 

 

 

Let 𝑋𝑁 = {𝑥𝑛 ∈ 𝑋}𝑛=1
𝑁  denotes 𝑁 points of sampled scenarios with observations. An observation 

of 𝑓(𝑥) is equivalent to one test run of the CAV. The observations are denoted as 𝑓(𝑋𝑁). Let 

𝑋𝑁∗ = {𝑥𝑛∗ ∈ 𝑋}𝑛∗=1
𝑁∗

 denote the 𝑁∗ points of scenarios without observations, i.e., 𝑓(𝑋𝑁∗). By 

properties of GP [19], 𝑓(𝑋𝑁∗) can be estimated by the posterior probability distribution as 

  

where  

 

 

and  𝐾(𝑋𝑁∗ , 𝑋𝑁) denotes the 𝑁 × 𝑁∗ matrix of the covariance functions evaluated at all pairs of 

𝑋𝑁 and 𝑋𝑁∗ . The mean function 𝑓𝑋𝑁
(𝑋𝑁∗) is naturally the estimation of 𝑓(𝑥) at scenarios 𝑋𝑁∗ . 

The variance function 𝜎𝑃,𝑋𝑁

2 (𝑋𝑁∗) denotes a type of confidence of the estimation. The overall 

process is denoted as the Gaussian process regression (GPR) method [19]. 

Design of the mean function 𝑚(𝑥) and covariance function 𝑘(𝑥, 𝑥′) is critical to the GPR. Zero 

mean function is applied. Covariance functions typically have the property that points closer in 

the variable space are more strongly correlated as 

 
 

where ‖∙‖ denotes a distance measurement. The commonly used covariance functions include 

squared exponential covariance function, Matern class of covariance functions, and piecewise 

polynomial covariance functions [19]. Hyperparameters of covariance functions can be 

determined by the maximum likelihood estimate method based on the observations [19]. All 

these covariance functions have a stationary assumption, i.e., covariances are only determined 

by the distances between scenarios. For the dissimilarity function 𝑓(𝑥), however, the covariance 



 

  

could be heterogenous, i.e., performances of a CAV may change more drastically in certain 

scenario neighborhoods than others. To solve this issue, non-stationary covariance functions 

should be applied, e.g., dot product covariance function [19]. 

In this project, the Gaussian process classification (GPC) is integrated into the GPR to solve the 

heterogenous issue. The idea is similar to the treed Gaussian process models [30], which divides 

the variable space by a decision tree and applies the GPR method in each region respectively. In 

this project, the input space is divided into two classes, i.e., dissimilar scenarios and similar 

scenarios, by the values of 𝑓(𝑥) as  

 
 

(2-11) 

where 𝑦(𝑥) denotes the class label, i.e., +1 for dissimilar scenarios and −1 for similar scenarios. 

The class labels of the scenarios 𝑋𝑁, i.e., 𝑦(𝑋𝑁), are calculated based on the observations 𝑓(𝑋𝑁) 

by Eq. (2-11). Let 𝑋𝑁1 denote the dissimilar scenarios in 𝑋𝑁 and 𝑋𝑁2 denote the similar scenarios, 

i.e., 𝑁1 + 𝑁2 = 𝑁. To classify the scenarios without observations, i.e., 𝑦(𝑋𝑁∗), the GPC places a 

prior probabilistic model over a latent function 𝑔(𝑥), computes posterior distribution of 𝑔(𝑥), 

and “squashes” the function through a logistic function to provide a probabilistic prediction of 

the class labels of scenarios, i.e., 𝑝(𝑦(𝑋𝑁∗)) [19]. Note that the purpose of the latent function 

𝑔(𝑥)  is solely to allow a convenient formulation of the model, and we are not particularly 

interested in the values of 𝑔(𝑥). Then, the probabilistic prediction of the class labels is 

 
 

where the logistic function is defined as 

 
 

With a pre-determined threshold 𝑃𝑡ℎ, scenarios without observations (i.e., 𝑋𝑁∗) can be classified 

into two classes including dissimilar scenarios (i.e., 𝑋𝑁1
∗) and similar scenarios (i.e., 𝑋𝑁2

∗). After the 

classification process, the GPR method is applied to two classes {𝑋𝑁1, 𝑋𝑁1
∗}  and {𝑋𝑁2, 𝑋𝑁2

∗} 

respectively. As the covariance functions are calibrated respectively, the classification-based GPR 

is non-stationary and can capture the heterogeneous characteristics of the dissimilarity function.  

Finally, based on the observations of scenarios 𝑋𝑁, the values of 𝑓(𝑥) can be estimated as 

 

 
 

where 𝒩(𝑓𝑋𝑁1
(𝑥), 𝜎𝑃,𝑋𝑁1

2 (𝑥))  denotes the GPR results in the dissimilar scenarios, and 

𝒩(𝑓𝑋𝑁2
(𝑥), 𝜎𝑃,𝑋𝑁2

2 (𝑥)) denotes the results in the similar scenarios. 

 



 

  

2.3.3 Surrogate Model Update and Library Generation 

Based on the estimated dissimilarity function 𝑓𝑋𝑁
(𝑥), the SM can be improved. A straightforward 

method is to add the estimated dissimilarity function to the original SM as 

 
 (2-12) 

where 𝑆0 denotes the event of interest with the original SM, and  𝑆𝑋𝑁
 denotes the event with the 

updated SM based on the observations 𝑋𝑁. The updated SM can be applied in the calculation of 

acquisition function to decide next iteration of testing scenarios. 

A new library can be constructed based on the new SM. One problem is the errors brought by 

the pre-determined threshold 𝑃𝑡ℎ, which could be amplified in the library generation process. To 

mitigate these errors, an expectation-based SM is constructed for library generation. To keep the 

rareness property of the SM, the values of 𝑃(𝑆𝑋𝑁
|𝑥) keep zero for scenarios 𝑥 ∈ 𝑈 as 

  (2-13) 

because neither prior knowledge (𝑃(𝑆0|𝑥)) nor posterior knowledge (𝑃(𝑆𝑋𝑁
|𝑥)) (see Eq. (4C-1)) 

indicates the scenarios 𝑥 ∈ 𝑈 to be critical. For other scenarios 𝑥 ∈ 𝑋 ∕ 𝑈, the SM values are 

recalculated by the expectation of classification probability to mitigate the influence of 𝑃𝑡ℎ as 

 

 
(2-14) 

where 𝑓𝑋𝑁1
(𝑥) and 𝑓𝑋𝑁2

(𝑥) denotes the regression result (i.e., mean value) at scenario 𝑥 based 

on the observations at scenarios 𝑋𝑁1 and 𝑋𝑁2 respectively.  

 

2.3.4 Acquisition Function Design 

The goal of the acquisition function is to decide next iteration of observations, i.e., next round of 

testing scenarios for the CAV. The objective function is unobservable unless 𝜇𝐴 is known, which 

is exactly what needs to be evaluated. Therefore, traditional acquisition functions based on 

objective functions cannot be directly applied. To solve this issue, a new acquisition function is 

designed. Both the classification uncertainty and regression variance are considered, and the 

exploitation and exploration are balanced. 

The expected improvement is the most commonly used acquisition function for Bayesian 

optimization methods as 

 
 

(2-15) 



 

  

where 𝐸𝑋𝑁
[⋅] = 𝐸[⋅ |𝑓(𝑋𝑁)] denotes the expectation taken from the posterior distribution given 

observations, 𝑓𝑋𝑁

∗ = max
𝑛≤𝑁

𝑓(𝑥𝑛), and 

 
 

For the ATSLG problem, the objective function is the estimation variance, so the ideal expected 

improvement of observing scenario 𝑥𝑁+1 is 

 
 

(2-16) 

where 𝑋𝑁+1 = {𝑋𝑁, 𝑥𝑁+1} , and 𝑞𝑋𝑁
 denotes the generated library by the observations in 

scenarios 𝑋𝑁.  

As discussed before, the calculation of Eq. (2-16) is infeasible based on observations. To 

solve this issue, a pointwise contribution to the estimation variance is defined to replace 𝜎2 as 

 

 
(2-17) 

Compared with Eq. (2-7), the maximal improvement of 𝜎2 by testing the CAV at scenario 𝑥 is 

bounded by 𝑃𝐼𝑋𝑁
(𝑥). Then the expected value of 𝑃𝐼𝑋𝑁

(𝑥) is derived as 

 

 
(2-18) 

Applying the integration by parts, the analytic form of Eq. (2-18) is as follow. 

Theorem 1. The analytic form of 𝐸𝑃𝐼𝑋𝑁
(𝑥) can be derived as  

 

 
(2-19) 

where 𝑖 = 1  for 𝑃(𝑦(𝑥) = +1|𝑦(𝑋𝑁)) > 𝑃𝑡ℎ , i.e., dissimilar scenarios, and 𝑖 = 2  for 

𝑝(𝑦(𝑥) = +1|𝑦(𝑋𝑁)) ≤ 𝑃𝑡ℎ, i.e., similar scenarios. 

The 𝐸𝑃𝐼𝑋𝑁
(𝑥) does not include the classification uncertainty. To explore the boundaries of the 

classification, the classification variance, i.e., 𝜎𝐶,𝑋𝑁

2 (𝑥), is integrated into the acquisition function 

as 

 

 
(2-20) 

where 𝑈 denotes the set defined in Eq. (2-13), 𝑈𝐸 = max
𝑥

𝐸𝑃𝐼𝑋𝑁
(𝑥) and 𝑈𝐶 = max

𝑥
𝜎𝐶,𝑋𝑁

2 (𝑥) are 

normalization factors to make the metrics comparable, 𝑤 is a weight to balance the two terms, 

and 𝜎𝐶,𝑋𝑁

2 (𝑥) can be calculated similarly. Recall neither prior knowledge nor posterior knowledge 



 

  

indicates that scenarios in the set 𝑈  are critical. Therefore, we cannot exploit an acquisition 

function to search potential critical scenarios in the set 𝑈. Instead, a small probability (𝛽) of 

random sampling is applied to explore these scenarios. Finally, the next iteration of testing 

scenario is decided by 

 

 
(2-21) 

2.3.5 Overall Algorithm 

As shown in Algorithm 1, the test of a CAV includes three steps, described in the following: 

The first step is to test the CAV with initial scenarios generated. The testing results provide a 

sketch of the dissimilarity function.  

Based on the sketch, the second step is to test the CAV with the most informative scenario 

iteratively. At each iteration, the dissimilarity function is estimated, the SM as well as the library 

is updated, and the acquisition function is calculated to determine the next test scenario. The 

iterative process will stop if the number of tests is larger than the pre-determined budget or the 

estimation precision is satisfied.  

With the updated library, the third step is to test and evaluate the CAV with the epsilon-greedy 

sampling policy. The minimal number of tests can be determined, and the CAV performance can 

be evaluated. 

3. Cut-in Case Study 

this section, the proposed method is demonstrated in a cut-in case for safety evaluation.   

3.1 Case Description 

Fig. 3 illustrates the cut-in case, where a background vehicle (BV) makes a lane change in front of 

the testing CAV. Similar to the previous work [6] [15], the decision variables in this case are 

determined as  

   

where 𝑅 and �̇� denote the range (i.e., vehicle distance) and range rate (i.e., speed difference) at 

the cut-in moment. The safety performance is evaluated by the accident rate of the CAV in public 

road test. The accident event can be defined by reaching a threshold of minimal distance 

between two vehicles, i.e., 𝑑𝑚𝑖𝑛. 



 

  

 

Figure 3 Illustration of the cut-in case. 

 

3.2 Offline Library Generation 

The TSLG method in [14] is conducted to generate the offline library, including naturalistic driving 

data (NDD) analysis, SM construction, and library generation. 

The NDD from the Safety Pilot Model Deployment (SPMD) program at University of Michigan [34] 

is utilized to estimate the exposure frequency of the cut-in scenarios. The SPMD database is one 

of the largest databases in the world that records naturalistic driving behaviors over 34.9 million 

miles from 2,842 equipped vehicles in Ann Arbor, Michigan. The following query criteria are 

designed to extract all cut-in events [6] [15]: (a) the vehicles’ speeds at the cut-in moment belong 

to (2𝑚/𝑠, 40𝑚/𝑠); (b) the range at the cut-in moment belongs to (0.1𝑚, 90𝑚). A total number 

of 414,770 qualified cut-in events are successfully obtained. The location distribution of the 

events is shown in Figure 4. The joint probability distribution of the cut-in range and range rate 

(i.e., 𝑃(𝑥)) is shown in Figure 5.  

 

Figure 4 An illustration of the cut-in events distribution in Michigan area [6]. 



 

  

 

Figure 5 The probability of the cut-in range and range rate in NDD, i.e., 𝑃(𝑥). 

SM denotes what we know about the common features of CAVs. In this proejct, one commonly 

used model, i.e., Full Velocity Difference Model (FVDM) [35], is adopted as the SM as the car-

following behaviors of CAVs after the cut-in event as 

 
  

where 𝑢(𝑘 + 1) denotes the acceleration of the CAV at time step 𝑘 + 1, 𝐶0, 𝑉1, 𝑉2, 𝐶1, 𝐿, and 𝐶2 

are constant parameters. Similar to [15], the constraints of acceleration and velocity are added 

to make the model more practical, i.e., model accident-prone behaviors, as 

   

All parameters in [35] are adopted and are calibrated by SPMD data as listed in Table 2. Figure 6 

shows the safety performance of the constructed SM, where the SM has accidents in the yellow 

region. 

Table 2 The values of the parameters for the cut-in case. 

Parameter Value Parameter Value 

𝐶0 0.85 𝑉1 6.75 

𝑉2 7.91 𝐶1 0.13 

𝐿 5 𝐶2 1.57 

𝑣𝑚𝑖𝑛 2 𝑣𝑚𝑎𝑥  40 



 

  

𝑎𝑚𝑖𝑛 -4 𝑎𝑚𝑎𝑥 2 

P𝑡ℎ 0.7 𝑤 0.5 

𝛾 0.5 𝛽 0.1 

 

 

Figure 6 Safety performance of the SM. 

To obtain critical scenarios and construct the library, the threshold for critical scenarios is 

determined as 

 
 

 

where 𝑁(𝑋) denotes the total number of scenarios as 𝑁(𝑋) = 47 × 76 = 3,420. The range and 

range rate are discretized by 2𝑚 and 0.4𝑚/𝑠 respectively, and their boundaries are (0,90] and 

[−20,10] . Figure 7 shows the obtained probability distribution combining both exposure 

frequency Figure 5 and maneuver challenge Figure 6. The colors denote the sampling 

probabilities of the scenarios, i.e., 𝑞(𝑥) in Eq. (2-9). In this case, the generated library contains a 

total number of 342 critical scenarios, which is about 10% of all scenarios. 



 

  

 

Figure 7 The offline generated library of the cut-in case for safety evaluation based on the 
FVDM. 

3.3 Adaptive Library Generation 

After the offline scenario library is generated, 50 scenarios are sampled as initial testing scenarios 

(Step 1 in Algorithm 1). Then 50 iterations of adaptive testing are conducted (Step 2 in Algorithm 

1). The MATLAB toolbox in [37] is utilized to execute the GPR/GPC. The squared exponential with 

automatic relevance determination covariance function is applied for the regression and 

classification as 

 

 
 

where 𝐷 denotes the dimensions of 𝑥. 𝜎𝑓 and  𝜆𝑑 are hyperparameters, which are determined 

by optimizing the marginal likelihood [19]. Since  𝜆𝑑 determines the relevancy of input features 

to the regression and classification, the covariance function is called “automatic relevance 

determination”. 

 



 

  

 

Figure 8. Results of 50 initial testing scenarios, where the black dots denote the dissimilar 
scenarios, and the orange dots denote the similar scenarios. 

Figure 8-10 show the results of the adaptive library generation process. The initial testing results 

are shown in Figure 8, where the black dots denote the dissimilar scenarios, and the orange dots 

denote the similar scenarios. A sketch of the dissimilarity function is obtained. As shown in Figure 

9 (a), after 5 iterations of adaptive testing and library generation, dissimilarities between the SM 

and the CAV are much decreased. Fig. 9 (e) shows that the acquisition function can capture both 

the classification uncertainty and the regression variances. After 50 iterations, the SM has been 

well developed and the dissimilarities are almost eliminated, as shown in Figure 9 (b) and (d). 

Compared with the offline generated library in Figure 7, the improved library in Figure 10 has 

been changed significantly. If more adaptive test budget is allocated, the acquisition function can 

further improve the SM.  

  

(a) Iteration 5: SM (b) Iteration 50: SM 



 

  

  

(c) Iteration 5: Remaining Dissimilarities (d) Iteration 50: Remaining Dissimilarities 

  

(e) Iteration 5: Acquicision Function (f) Iteration 50: Acquicision Function 

 

Figure 9. The results of the adaptive library generation for the cut-in case. 

 



 

  

 

Figure 10. The improved library of the cut-in case for safety evaluation. 

 

3.4 CAV Evaluation 

Based on the improved library, the CAV evaluation process is then performed. The accident rate 

of the CAV is estimated by public road test method as in Eq. (2-3), offline library evaluation 

method as in Eq. (2-4), and the adaptive library evaluation method. Figure 11 shows the 

evaluation results of the cut-in case. Results show that all three methods can converge to the 

same accident rate after sufficient number of tests (Figure 11 (a) and (c)). To compare the 

convergence speed, the relative half-width is estimated by Eq. (2-5) with the three methods in 

Figure 11 (b), Figure 11 (d, blue line), and Figure 11 (d, red line) respectively. To reach the 0.2 

relative half-width, the total required number of tests are 1.9 × 105, 2,090, and 121 respectively. 

Note that the 121 tests with the adaptive library evaluation method already include 100 tests 

during the adaptive library generation process. Therefore, the proposed method in this project 

accelerates the evaluation process by 1570 times and 17 times respectively. Figure 11 (e) shows 

the numbers of required tests with different required relative half-widths (i.e., precision). With 

higher precision requirements (i.e., decreasing of the relative half-width), the original TSLG 

method becomes very inefficient, because the dissimilarities can’t be eliminated.  

 



 

  

  

(a) (b) 

  

(c) (d) 



 

  

 

(e) 

Figure 11. The evaluation results of the cut-in case with NDD evaluation (a, b), offline library 
evaluation (c-e, blue line), and adaptive library evaluation (c-e, red line). 

 

4. Findings and Recommendations 

In this project, we proposed an adaptive testing scenario library generation method for CAV 

evaluation. The major idea is to generate the customized library by compensating the 

dissimilarities between SM and CAV through an adaptive testing process. To leverage each test 

of CAV, the Bayesian optimization scheme is applied. A classification-based Gaussian process 

regression is adopted to estimate the non-stationary dissimilarity function, and a new acquisition 

function is designed to determine new testing scenarios in each iteration. A cut-in case is 

investigated for safety evaluation. Comparing with the TSLG method, the total number of 

required tests is further decreased by a few orders of magnitude (e.g., 10-100 times). More 

importantly, the acceleration of the evaluation process is more prominent if higher evaluation 

precision is required. To the best of our knowledge, this is the first study that identifies the 

adaptive TSLG problem and solves it systematically. It provides guidelines in generating testing 

scenario libraries for closed testing facilities to enable accurate and efficient CAV evaluation. 

 

5. Outputs 

The following outputs were generated during the performance of this project: 

• Conference Presentations: 2020 TRB Annual Meeting and 2020 Automated Vehicle 

Symposium 



 

  

• Journal Paper: Feng, S., Feng, Y., Sun, H., Zhang, Y., & Liu, H. X. (2020). Testing scenario 

library generation for connected and automated vehicles: an adaptive framework. IEEE 

Transactions on Intelligent Transportation Systems. DOI: 10.1109/TITS.2020.3023668.  

6. Impacts 

The impacts from the development of an adaptive testing scenario generation framework are 

significant.  This has the potential to save automobile manufacturers and their suppliers millions 

of dollars in testing by improving the testing process with a few magnitudes. With the proposed 

framework, the automobile manufacturers don’t need to deploy real vehicles on the road to 

perform NDD evaluation for billions of miles to collect statistic significant result. This cost savings 

can be cascaded to consumers, making the cost of a CAV more affordable.  In turn, this may 

increase the penetration of CAVs faster.  
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